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Abstract
Satellite assessment of aboveground plant residue mass and quality is essential for agro-ecosystem management of organic

nitrogen (N) because growers credit a portion of residue N towards crop requirements the following spring. Precision agriculture

managers are calling for advanced satellite models to map field-scale residue mass and quality. Remote sensing has proven

useful for assessing the concentration of foliar biochemicals under controlled laboratory conditions, but field-scale satellite

model validation for quantitative, landscape-scale N assessment is needed. We addressed this problem by building ground-truth

models for sugar beet N-credit and testing these models with alternate satellite sensor imagery. We recorded spectral reflectance

and measured leaf carbon (C) and N in situ at leaf and canopy levels near the end of the growing season using 1 nm bandwidth

spectroradiometer. We performed univariate correlation analyses between spectral reflectance and the variables N, C:N ratio and

biomass to determine spectral signature models for leaf quality and spectral signature models for plant biomass. The 1 nm

hyperspectral data were convolved to fit Landsat 5, SPOT 5, Quick-Bird 2, and Ikonos 2 multi-spectral satellite bands and

models created using stepwise linear regression. Biomass formulae for each sensor were applied to satellite imagery acquired at

peak season, while leaf quality formulae were applied to imagery acquired just prior to harvest. August sugar beet fields in the St.

Thomas, ND vicinity were identified and aboveground biomass mapped with 10–20% error, depending upon the sensor. Sugar

beet leaf N was similar for all sites and varieties tested (31 mg g�1 dw), so biomass primarily influenced N-credit estimates.

Measured C:N ratio variability was identified and mapped to delineate areas where C:N ratio was outside the normal distribution.

The general model for each sensor maps N-credit per unit area and delineates aberrant, low leaf quality areas as zones with high

C:N ratio. In summary, we provide separate spectral models for N-credit and leaf quality applicable to available multi-spectral

sensors for precision sugar beet N management.
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1. Introduction

Fertilization management is essential for balancing

productivity and profits in agro-ecosystems, although

environmental impacts associated with N fertilization

is an emerging area of concern (Nosengo, 2003). An

increasing body of scientific evidence indicates that

excessive N fertilization negatively influences water

quality, air quality and ecosystem biodiversity

(Vitousek, 1997). Consequently, scientific and poli-

tical communities are calling for agro-ecosystem

managers to explore technological tools to reduce

nitrate in groundwater, atmospheric nitric acid,

ammonium deposition, and emissions of greenhouse

gases (Nosengo, 2003).
Fig. 1. Study area inside the Red River Ba
One way growers can reduce N inputs is by

estimating organic N remaining in crop residues to

offset or reduce synthetic N application, a task which

could be advanced with satellite data products

(Whitmore and Groot, 1997). Sugar beet (Beta vulgaris

L.) leaf tops are particularly N-rich and remain in soils

following harvest (Moraghan and Smith, 1996), with

reportedly 47% of fertilizer N inputs stored in

aboveground leaf material (Vos and van der Putten,

2000). Most of this N ‘‘sink’’ is in leaf (rather than stem)

biomass, contributing from 100 to 450 kg ha�1 that is

commonly ploughed back into soil in autumn (Vos and

van der Putten, 2000; Franzen et al., 2001). In 2002,

over 200,000 ha of sugar beets were cultivated in the

Red River Valley of the North Ecoregion, USA (Fig. 1).
sin, near St. Thomas, North Dakota.
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If the N-credit for this region were 100 kg ha�1, N

fertilization input could have been reduced by 20,000

metric tons in 2003. Actual N-credit, however, is highly

variable (depending upon crop growth parameters) so it

must be estimated within and between fields each year

(Abshahi et al., 1984; Vos and van der Putten, 2000;

Franzen et al., 2001). Precision agriculture managers,

therefore, are calling for synoptic detection of N in plant

residues, so that excessive fertilization may be avoided

(Sims et al., 2002). Satellite data models present a clear

option for improved N management through integration

of spatial and temporal crop information over large

areas.

The N-credit assigned to a field or field-section can

be defined as the amount of N in plant leaf residue

(Moraghan and Smith, 1996), calculated as the

product of leaf biomass and N content (Eq. (1)):

residue N-credit ¼ ½Bfresh � Lfraction�

� ðleaf N=1000Þ
ð1 þ MfractionÞ

� �
(1)

where B is aboveground biomass (kg ha�1), L the

fraction of aboveground leaf biomass without stems,

leaf N is amount of nitrogen determined analytically in

dry leaf material [mg g�1 dry weight (dw)], and M is

leaf water content. Aboveground biomass is often

spectrally estimated according to indices such as

the normalized difference vegetation index [NDVI:

(Rnir � Rred)/(Rnir + Rred)] and the green normalized

difference vegetation index [GNDVI: (Rnir � Rgreen)/

(Rnir + Rgreen)], where R is the reflectance at a specific

bandwidth. These indices are especially useful for

heterogeneous systems in nature. For homogenous

sugar beet agro-ecosystems, spectral biomass models

may be more accurate than NDVI (Bouman, 1992;

Clevers, 1997; Guerif and Duke, 2000; Reeves et al.,

2001). Although indices are valuable tools with

demonstrated applications, they by definition prevent

multi-spectral separation of biomass from leaf quality.

For N-credit estimation, biomass and N are indepen-

dent, so we developed individual spectral models for

each variable and satellite sensor.

Remote sensing aerial and ground level platforms

can be modeled to detect specific leaf N content

(Boegh et al., 2002; Mutanga et al., 2004), but multi-

spectral satellite imagery applications are lacking

(Moran et al., 1997). Boegh et al. found that aerial data
in the green and far-red bands were correlated with

leaf N for multiple crops. Mutanga et al. found that

selected, 1 nm width wavelengths (417, 438 and

2125 nm) collected at ground level were correlated

with leaf N in slightly senescent natural grasslands of

diverse vegetation (Mutanga et al., 2004). However, it

is not known how well multi-spectral satellite plat-

forms (for which spectral bandwidths are often several

hundred nm) can delineate leaf N. Research indicates

that leaf N carries a unique spectral signature, yet

multi-spectral satellite platform applications should

be demonstrated (Jacquemoud et al., 1995; Kokaly

and Clark, 1999).

Another factor influencing N-credit is leaf quality.

The ratio of C:N is suggestive of leaf quality and a

common reference among plant ecologists. When C:N

ratio is high, leaf material is not easily mineralized, so

high C:N ratio leaf material is considered low quality.

The actual amount of N stored in leaf tops that is

mineralized and mobilized in spring depends upon the

C:N ratio of the residue (Whitmore and Groot, 1997).

Therefore, C:N ratio indirectly affects N-credit by

controlling N availability.

Since our goal was to provide large scale

information applicable to precision N management

in ‘real world’ agro-ecosystems, we needed to extend

beyond controlled laboratory conditions and collect

ground data from sugar beet fields in production, as

suggested by Moran et al. (1997). Consequently, we

studied sugar beet fields managed by local growers to

build ground-truth models with spectral and chemical

analyses. We applied these models to alternate multi-

spectral satellite sensors and evaluated the utility of

these results in an agribusiness environment. We

enlisted the cooperation of two established sugar beet

land managers during the summer of 2003 in the Red

River Valley, North Dakota, one of the two largest

sugar beet production regions in the USA (Leff et al.,

2004).
2. Methods

2.1. Overview

We investigated two sugar beet fields in the Red

River Valley near St. Thomas ND (978270W; 488370N)

seeded during the same week in April 2003 (Fig. 1).
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Sites were <5 km away from each other and similar

with regard to climate, historical land-use and soil

series (Glyndon silt loam; Coarse-silty frigid Aeric

Calciaquoll). The west site (PC789) was a 28 ha field

where leaf C (mg g�1), leaf N (mg g�1), plant N

(g plant�1), and fresh leaf biomass (kg ha�1) were

measured and sugar beet leaf spectral signatures

recorded. The east site (AT05) was a 30 ha field where

fresh leaf biomass (kg ha�1) was measured and

canopy spectra recorded. We evaluated field measure-

ments from both sites to build and test N-credit

satellite models for agricultural managers. These were

developed by achieving the following objectives: (1)

determine spectral regions most highly correlated with

leaf N, C:N ratio and biomass, (2) aggregate

hyperspectral ground data to fit multi-spectral satellite

sensors Landsat 5, SPOT 5, Ikonos 2, and Quick-Bird

2, (3) derive formulae from the aggregated spectra to

estimate leaf N, C:N ratio and canopy biomass, (4)

assess accuracy for each satellite sensor model, and (5)

map N-credit and leaf quality (C:N ratio) for the St.

Thomas, ND landscape. Methods required for this

interdisciplinary study are outlined according to field

site surveyed.

2.2. Field PC789 ground data

Field PC789 was selected based on soil homo-

geneity, as determined by random soil tests for

nitrogen, phosphorous, potassium and micronutrients

(Simplot, Inc., Grafton, ND).1 PC789 was seeded with

four sugar beet varieties in a 4 � 2 randomized block

design: American Crystal Sugar 999 (ACS 999), Beta

6600, Holly 811, and Vanderhoff 556 (VDH 556). Two

random points within replicate strips were selected

using 3 m resolution data by ERDAS Imagine

(Version 8.6) random generator. Plant samples at

each point were collected on September 15, 2003,

approximately 2 weeks before harvest. Each point was

located with a Trimble GPS and beacon for sub-meter

positional accuracy. At each point, one entire beet

plant was cut to ground level, and leaf material was

separated into three leaf size groups: small (5–10 cm

wide), medium (10–15 cm wide) and large (>15 cm
1 Mention of commercial products and organizations in this

article is to provide specific information only. It does not constitute

endorsement by UMAC, UND, or USDA-ARS over other products

and organizations not mentioned.
wide). Leaf spectra were recorded for each leaf size

group (48 total) using a hand-held spectroradiometer

(ASD Instruments, Boulder, CO). Reflectances were

recorded in 1 nm bands between 350 and 2500 nm

from a height of 0.25 m above the leaf. The

spectroradiometer was calibrated between each leaf

size group at each location. Five spectral measure-

ments were recorded for each of the 48 samples to

obtain an average.

Aboveground biomass (g m�2) was collected near

the original 16 sites on October 3, 2003. Beet tops

within a 1 m2 plot were clipped to ground level,

bagged and weighed. PC 789 biomass data were

utilized for evaluating formulae created using the

AT05 field site ground data.

Correlation analyses were performed for hyper-

spectral ground data to determine the spectral region

most highly correlated with leaf N by leaf size

group (Fig. 2). Hyperspectral data collected at ground

level were then convolved to multi-spectral bands

according to sensor-specific radiometric parameters

(Jacquemoud et al., 1995) for Ikonos 2, SPOT 5,

Quick-Bird 2, and Landsat 5 (Table 1). These con-

volutions simulate satellite-borne sensor response

and facilitate comparisons among sensors and sensor

platforms (Table 2). We separately analyzed con-

volved bands that correlated with leaf N and C:N

ratio to determine if those bands varied significantly

with leaf size using the SAS Proc GLM analysis of

variance and distinguished groups according to

Tukey’s least significant difference test (SAS

Institute, Cary, NC).

Leaf N (mg g�1 dw) and C:N ratio were statisti-

cally analyzed to test for differences among varieties

and leaf size categories using the SAS Proc GLM

analysis of variance and significantly different groups

determined according to Tukey’s least significant

difference test. In addition, total N per plant was

calculated by totaling weighted means for each leaf

size category. Plant N (kg ha�1) was multiplied by the

number of plants harvested as an alternative method

for aboveground N estimation.

Correlation and stepwise regression procedures

between leaf N (mg g�1 dw) and convolved spectra,

and C:N ratio and convolved spectra were utilized for

creating sensor-specific formulae. N and C:N ratio

formulae results were mapped using imagery acquired

within 10 days of sample collection.
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Fig. 2. Correlation between hyperspectral ground data and leaf N for each leaf size group (n = 15) recorded September 15, 2003 in field PC789.

Table 1

Satellite imagery acquired in 2003, including satellite references specifications for spectral response curves

Sensor name Path-row Date Sensor reference

Landsat 5 031–026 August 16 http://ltpwww.gsfc.nasa.gov/ias/handbook/handbook_htmls/chapter8/html

SPOT 5 573–251 July 18 http://www.spotimage.fr/html/_167_224_229_.php

SPOT 5 573–252 August 13 http://www.spotimage.fr/html/_167_224_229_.php

SPOT 5 573–252 September 23 http://www.spotimage.fr/html/_167_224_229_.php

Ikonos 2 Custom August 8 http://www.spaceimaging.com/products/ikonos/spectral.htm

Ikonos 2 Custom September 7 http://www.spaceimaging.com/products/ikonos/spectral.htm

Quick-Bird 2 Custom July 28 Dr. Jack, F. Parris, New Products R&D Group, Digital Globe, Inc.
2.3. Field AT05 ground data

AT05 was seeded with one sugar beet variety,

American Crystal Sugar 817 (ACS 817), in April

2003. A north to south productivity gradient existed

for this field, so it was divided into three equal

sections. Three locations within each section were
Table 2

Average leaf N (mg g�1 dry weight) �1 standard deviation measured vs.

Leaf size Leaf N measured Landsat 5 Quick-Bi

Estimated N R2 Estimated

Small 40.4 � 9.9 40.8 � 4.3 0.55 40.7 � 4.

Medium 37.2 � 8.0 33.1 � 7.1 0.55 33.3 � 7.

Large 27.2 � 6.6 30.3 � 7.3 0.55 30.0 � 7.
randomly selected for spectral and biomass sampling.

At each location, four plots (0.2 m � 3 m) 
10 m

apart were staked for repeated spectral measurements

and biomass determination. Spectral data were

recorded at these points on August 16, September 4

and September 15 using the hand-held spectro-

radiometer. Ten spectral readings were recorded at
model estimates by size for all varieties

rd 2 SPOT 5 Ikonos 2

N R2 Estimated N R2 Estimated N R2

4 0.55 37.5 � 5.7 0.36 40.8 � 4.4 0.55

0 0.55 32.9 � 6.4 0.36 33.2 � 7.0 0.55

4 0.55 34.3 � 5.2 0.36 30.1 � 7.3 0.55

http://ltpwww.gsfc.nasa.gov/ias/handbook/handbook_htmls/chapter8/html
http://www.spotimage.fr/html/_167_224_229_.php
http://www.spotimage.fr/html/_167_224_229_.php
http://www.spotimage.fr/html/_167_224_229_.php
http://www.spaceimaging.com/products/ikonos/spectral.htm
http://www.spaceimaging.com/products/ikonos/spectral.htm
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Fig. 3. Correlation between hyperspectral ground data collected on three dates and aboveground biomass (n = 36) recorded in field AT05.
the canopy level (1.5 m above leaf tops) to obtain the

average per plot for each date.

Aboveground plant material for all 36 plots was

clipped to ground level and weighed on September 23.

Correlation and stepwise regressions were performed

(as in field PC789) to create sensor-specific biomass

models (Fig. 3). Further, indices commonly used to

estimate biomass (NDVI, GNDVI) were also tested

with correlation analyses. Spectral biomass estimates

were mapped using Quick-Bird 2, Landsat 5, SPOT 5,

and Ikonos 2 satellite images and validated with 24

ground points.

2.4. Satellite data processing

Images from four different satellite sensors were

acquired (Table 1), calibrated and tested using ground

based spectra. Digital numbers were corrected to

ground reflectance with the following (Eq. (2)):

Rx ¼ ðp�d2�ðgain�xðDNx � minxÞÞÞ
ðE-SUN�

x sinðuÞÞ (2)
where R is the ground reflectance for each band (x), d

the Earth–Sun distance in astronomical units for the

image date, gain is the band specific rescaling factor,

DN represents digital number in the raw image, min

the lower DN in the specific band (Chavez, 1996), E-

SUN the mean solar exoatmospheric irradiance, and u

the sun elevation angle (Huang et al., 2002; NASA,

2003).

Classification for the research area was performed

using SPOT and Landsat imagery with decision tree

landscape analysis. Five major classes were identified

for N-credit mapping: water, anthropogenic, unculti-

vated vegetation, sugar beet crops, and other crops.

Classification accuracy was 90%, with an overall

Kappa Statistic of 0.8638.

2.5. N-credit satellite model

Spectral models derived for satellite sensor

application were evaluated for accuracy by compar-

ison with ground-truth data. Sensor model errors for

N-credit and leaf quality were compared by calculat-
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Fig. 4. Schematic illustration of N-credit model using satellite formulae estimates for biomass, N and C:N ratio.
ing the deviations of predicted values from observed

values, summing up the measurements, and then

taking the square root of the sum. The result is the root

mean square error (RMSE) or the standard deviation

of the residuals, which depicts the error associated

with each model prediction compared to observed

values. The final N-credit map depicts spatial

information for canopy N content and biomass, while

the final leaf quality map denotes areas of high,

medium or low C:N ratio (Fig. 4).
3. Results

3.1. Plant leaf and canopy spectral ground data

3.1.1. Leaf nitrogen and C:N ratio

Leaf N was similar among the four sugarbeet

varieties, but large leaf N was 30% lower overall than

for small and medium leaf N (Table 2). Sugar beet

spectral signatures were most highly correlated with

leaf N in the 490–600 nm, blue-green range (Fig. 2).

A good correlation was also evident in the narrow
wavelength band between 690 and 720 nm. Since

multi-spectral satellite data for this region were not

available, these data were not included in subsequent

analyses. Results of the stepwise regressions indicated

that the convolved green and blue bands significantly

contributed to sensor-specific leaf N models. Spectral

estimates for leaf N indicated that N was similar among

varieties but varied significantly among leaf sizes for

Landsat 5, Quick-Bird 2 and Ikonos 2 sensor bands.

Overall, values predicted using Ikonos 2, Quick-Bird 2

and Landsat 5 sensors were between 13 and 22% of

actual leaf N for all leaf sizes (see RMSE Table 3). The

SPOT 5 sensor lacks blue spectra, so the SPOT 5 did not

perform as well as the others for leaf N. Tukey’s least

significant difference test for Landsat 5, Quick-Bird 2

and Ikonos 2 spectral estimates indicated that small leaf

N was significantly higher than large leaf N, which is

consistent with the leaf chemical data (P < 0.05).

However, the spectral models did not differentiate

medium from large leaf N. Satellite estimates did not

delineate leaf N content between 27 and 37 mg g�1 dw.

The relationship between leaf size and C:N ratio

was similar to the relationship between leaf size and
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Table 3

Spectral formula and formula evaluation (root mean square error, RMSE) using data acquired for each sensor

Sensor Acquired C:N ratio formulaa RMSE Leaf N (%) formula RMSE Biomass formula RMSE

Ikonos 2

Nitrogen September 7 Y = 5.63 � (213.54 � B)

+ (165.61 � G)

Y = 5.21 + (67.38 � B)

� (49.01 � G)

If NIR > 0.516;

Y = 152923 � NIR � 38995

Biomass August 8 ACS 999 2.63 Small 6.10 8104

Beta 6600 1.52 Medium 5.00

Holly 811 1.77 Large 4.70

VDH 556 1.35

SPOT 5

Nitrogen September 23 Y = 2.94 + (85.13 � G) Y = 6.06 � (23.40 � G) If NIR > 0.520;

Y = 155128 � NIR � 40478

Biomass August 13 ACS 999 2.93 Small 6.70 8514

Beta 6600 1.59 Medium 5.70

Holly 811 2.08 Large 7.70

VDH 556 2.41

Quick-Bird 2

Nitrogen July 28 5.63 � (215.70 � B)

+ (167.98 � G)

5.22 + (67.26 � B)

� (49.34 � G)

If NIR > 0.517;

Y = 153686 � NIR � 39436

Biomass July 28 ACS 999 2.62 Small 6.10 7937

Beta 6600 1.53 Medium 5.00

Holly 811 1.76 Large 4.70

VDH 556 1.36

Landsat 5

Nitrogen August 16 6.04 � (229.08 � B)

+ (171.16 � G)

5.08 + (72.89 � B)

� (51.14 � G)

If NIR > 0.520;

Y = 155492 � NIR � 40591

Biomass August 16 ACS 999 2.59 Small 5.80 8790

Beta 6600 1.42 Medium 5.10

Holly 811 3.64 Large 4.70

VDH 556 1.27

a B and G represent the blue and green bands, respectively, and NIR represents the near infra-red band.
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Table 4

Average leaf C:N ratio �1 standard deviation measured vs. model estimates by variety for all leaf sizes

Variety C:N ratio measured Landsat 5 SPOT 5 Quick-Bird 2 Ikonos 2

Estimated C:N R2 Estimated C:N R2 Estimated C:N R2 Estimated C:N R2

ACS 14.38 � 4.8 13.71 � 3.45 0.51 13.73 � 2.75 0.36 13.84 � 3.41 0.51 13.80 � 3.40 0.51

Beta 11.05 � 2.2 11.72 � 1.59 0.51 11.12 � 1.25 0.36 11.72 � 1.65 0.51 11.70 � 1.65 0.51

Holly 11.23 � 2.4 11.97 � 2.99 0.51 12.49 � 1.51 0.36 11.99 � 3.10 0.51 11.98 � 3.07 0.51

VDH 11.79 � 3.1 11.82 � 2.14 0.51 11.76 � 1.97 0.36 11.70 � 2.05 0.51 11.71 � 2.08 0.51
N. Small and medium leaves were highest in leaf

quality, with C:N ratios of 10.9 and 11.2, respectively.

Average large leaf C:N ratio was 14.6, indicating that

leaf quality is significantly lower in the larger leaves

(P < 0.05). Leaf C:N ratio also varied with variety,

with ACS 999 significantly greater than Beta 6600 for

all leaf sizes (Table 4). Leaf C:N ratio spectral

formulae, derived using stepwise regression for each

sensor, also utilized convolved green and blue bands.

Formulae estimates using convolved data varied with

sensor, but sensor prediction error was between 13 and

30% of actual leaf C:N for all varieties (see RMSE

Table 3). We did not find significant differences

between actual and spectral leaf C:N ratio estimates

using comparison t-tests, suggesting the potential for

satellite detection of leaf canopy C:N.

3.1.2. Biomass

Sugar beet spectral signatures in the near infra-red

(NIR) region (760–925 nm) were most highly

correlated with biomass for all dates at the canopy

level (Fig. 3). This NIR plateau is common among

vegetation spectra, and the 165 nm width for this

region is well suited for broadband multi-spectral

sensor applications. NDVI and GNDVI indices were

also tested, and results were similar to using the NIR
Table 5

Average sugar beet biomass model estimates (kg ha�1) � 1 standard dev

Sensor Imagery

acquired

NIR minimum

(reflectance)

S:N

Measured

SPOT 5 September 23 0.4432 38.

SPOT 5 August 13 0.5200 71.

SPOT 5 July 18 0.5200 57.

Ikonos 2 September 07 0.4905 34.

Ikonos 2 August 08 0.5160 36.

Quick-Bird 2 July 28 0.5157 39.

Landsat 5 August 16 0.5200 50.
only. Leaf N and C:N ratio could not be delineated in

the NIR (Fig. 2), and this allowed us to independently

evaluate leaf quality from biomass models.

Biomass estimation at peak season in August was

required to avoid errors introduced by early September

pre-harvest and leaf senescence. Also, the correlation

between spectral signature and biomass was greatest

at peak season when plants were highly productive and

at full cover (Fig. 3). Spectral ground data, beet

phenology, and removal of material at pre-harvest

suggested optimum image acquisition during August.

Average biomass for the high productivity section

of AT05 (50,000 kg ha�1) was significantly greater

(P < 0.01) than biomass for the low productivity

section (31,000 kg ha�1), while biomass for the center

field section (38,000 kg ha�1) was intermediate.

Convolved NIR spectral values were also 
20%

greater for high productivity sections, compared to

low, with a region of delineation near 0.5 reflectance,

depending upon sensor. Significant differences in the

low productivity sites precluded combining these data

with the more typical, productive sites. Consequently,

equations formulated were according to intermediate

and high production field sites using the NIR region

>0.5 reflectance (Tables 3 and 5). Although the

stepwise regression suggested that both the NIR and
iation by sensor and image acquisition date

ratio Field AT05

biomass

Field PC789

biomass

R2

42833 � 8175 43986 � 8800

2 60286 � 6130 50853 � 9578 0.19

9 45219 � 5163 43669 � 1250 0.36

8 42293 � 5582 51581 � 3754 0.36

6 46879 � 2487 33571 � 1244 0.02

4 32399 � 4425 45231 � 990 0.35

2 – 44322 � 1648 0.35

4 39284 � 6260 43924 � 1475 0.37
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Table 6

Average spectral model estimates � 1 standard deviation using satellite imagery for leaf quality (C:N ratio) and N content (%) by variety

Leaf Date acquired 2003 Signal:noise Sensor R2 ACS 999 Beta 6600 Holly 811 VDH 556

C:N Measured 17.29 � 3.02 12.82 � 0.53 12.00 � 1.63 12.88 � 3.42

September 7 15.8 Blue Ikonos 0.51 13.57 � 0.10 13.42 � 0.53 13.45 � 0.21 13.21 � 0.28

25.6 Green

September 23 59.1 Green SPOT 0.36 15.88 � 0.82 16.17 � 0.46 16.48 � 0.55 16.18 � 0.57

N Measured 2.73 � 1.03 3.13 � 0.19 3.27 � 0.41 3.24 � 0.93

September 7 15.8 Blue Ikonos 0.55 2.94 � 0.11 2.98 � 0.11 2.97 � 0.06 3.04 � 0.06

25.6 Green

September 23 59.1 Green SPOT 0.36 2.5 � 0.23 2.42 � 0.11 2.33 � 0.15 2.42 � 0.16
red bands would contribute to the model, we found

that the NIR band alone provided the most accurate

estimates.

3.2. Satellite application of ground-truth models

3.2.1. Canopy N and C:N ratio

Plant canopy N, computed by summing N mass for

each leaf size group by plant, was similar among
Fig. 5. Sugar beet leaf spectra (350–2500 nm), with enlargements of v

differences among satellite sensors.
varieties, with an overall average of 30 mg g�1 dw.

The ACS 999 variety contained a greater proportion of

large leaves with significantly greater C:N ratio;

consequently, ACS 999 mean canopy C:N ratio was

greater than average leaf C:N ratio (Table 4). Plant

canopy N and C:N ratios tend to change from the

beginning to the end of the growing season as

carbohydrates and nutrients are re-translocated below-

ground. Therefore, most accurate spectral estimates
isible (B) and NIR (C) spectral regions highlighting center point
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for potential aboveground residual C and N are near

harvest at the end of September. Two images met these

criteria, since they were acquired prior to harvest

(SPOT 5 and Ikonos 2 sensors) and within 1 week of

leaf chemical processing (Table 1).

SPOT 5 model estimates for canopy N and C:N

ratio were significantly different from ground-truth

data, according to a paired t-test comparison

(P < 0.05). The SPOT 5 model tended to overestimate

canopy C:N ratio and underestimate N (Table 6).

Model errors were likely due to a combination of

factors, including the lack of blue spectra, low

predictive value of the formula (r2 = 0.36), insufficient

signal to noise ratio (S:N), and multi-spectral sensor
Fig. 6. N-credit and leaf quality maps with enlargements indica
peak offset (Fig. 5). Peak offset refers to the

differences in the center point of the green band

among sensors. The center of the SPOT green peak is

540 nm, which is shifted away from the narrow leaf

signature peak of 550 nm. Offset error for this sharp

peak of interest may skew model estimates toward

higher C:N ratio and leaf N content, as found in our

evaluation.

Ikonos 2 canopy N and C:N ratio estimates,

however, were similar to leaf chemistry (Table 6),

although estimates failed to detect the full range of

measured variability among varieties. Error in the

model formula (r2 = 0.51) and low S:N ratios likely

subsumed subtle differences between ACS 999 and
ting sugar beet fields where C:N ratio is unusually high.
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Fig. 7. Measured vs. satellite estimates (mean � 1 standard deviation) for PC789 (n = 15) and AT05 (n = 9) biomass according to Ikonos 2,

SPOT 5, and Landsat 5 data acquired in August.
Beta 6600 varieties. Our sugar beet leaf and canopy N

measurements are representative of cultivated sugar

beet leaves (Franzen et al., 2001), but satellite

delineation within the measured range (25–

45 mg g�1) is not likely. Alternatively, we delineate

areas where leaf tissue is unusually nutrient deficient

or lower in quality using C:N ratio (Fig. 6). Aberrant

leaf quality may be attributed to climate, weed

invasions, plant pathogens, or other stress factors.

Ultimately, N-credit for weedy or stressed sites should

be evaluated as distinct from typical leaf residue sites.

3.2.2. Biomass

Sugar beet canopy NIR reflectance data were

highly correlated (0.6–0.8) with biomass for highly

productive beets with leaves at full canopy (Fig. 3), as

demonstrated previously (Richardson and Wiegard,

1977; Jensen et al., 1998; Guerif and Duke, 2000;

Boegh et al., 2002). Sugar beet canopy LAI can be

estimated more accurately using the NIR band than the

red or the green spectral bands (Guerif and Duke,

2000), due in part to the wide NIR plateau that

minimizes formulae error and sensor-specific sensi-
tivity (Fig. 5). In general, spatial variability within

fields was subsumed by spectral model estimates

(Table 5), but errors for August predictions were

within 10–20% of measured biomass (see RMSE

Table 3). In spite of errors introduced by the S:N ratio,

sensor spatial resolution, and gradients in crop

productivity, model estimates for August biomass

using Ikonos 2, SPOT 5 and Landsat 5 were 84, 94,

and 94% of the measured mean values, respectively

(Table 5). Landsat 5 spatial resolution is coarser than

Ikonos 2 and SPOT 5, but the S:N ratio is much

greater. Consequently, the accuracy of biomass

estimates using Landsat 5 is comparable to Ikonos

2 and SPOT 5 (Fig. 7).

3.2.3. N-credit satellite model

Canopies high in biomass and high in leaf N

content could contribute enough soil N to mitigate

fertilization the following year without impacting

yield (Sims et al., 2002), and current multi-spectral

sensor data can assist growers with canopy N content

assessment. Sugar beet N-credit mapping is possible

using multi-spectral satellites by coupling two
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Fig. 8. Comparison of mean values (�1 standard deviation) calculated for N-credit using: (1) measured data (leaf biomass multiplied by leaf N

content), (2) Ikonos spectral model estimates, and (3) harvest data (number of plants harvested multiplied by leaf N content).
formulae: (1) the quantitative spectral biomass

formula and (2) the qualitative N formula that

delineates average from low leaf N (Fig. 6A). Map

results indicate variability within and between fields,

ranging from 
150 to 350 kg ha�1. Leaf quality (high

C:N ratio), on the other hand, may also be mapped to

provide information that may help managers discern

leaf quality from biomass or other issues (Fig. 6B).

Spectral errors in the C:N ratio and leaf N models

prevented quantitative leaf quality detection, however

qualitative evaluation is feasible. Fig. 6B enlargement

depicts fields (1 and 2) with average leaf quality;

however, when compared with Fig. 6A, N-credit is

lower for field 2. There may be other issues here that

influence N-credit aside from leaf quality. Alterna-

tively, leaf quality for field 3 is lower on the east side,

which corresponds to lower N-credit. These high C:N

ratio zones indicate potential differences in N

mineralization rate, which will likely alter N-credit

and N fertilization for these areas.

Satellite models tend to under-estimate N-credit,

but they more closely resemble ground-truth data than

N-credit calculated according to the number of plants

harvested (Fig. 8). For this study, we calculated
average N-credit for field PC789 according to ground

data (
350 kg ha�1), Ikonos 2 (
300 kg ha�1) and

number of plants harvested (
200 kg ha�1).
4. Discussion

Sugar beet residue contributes to the pool of

potentially available N the following spring and

reduces fertilizer requirements (Moraghan and Smith,

1996), and few spectral models applicable to leaf N

detection have been created and evaluated using

current satellite imagery. Previous studies conclude

that the 550 and 700 nm (green and far-red)

wavelengths are linearly related to the amount of

leaf chlorophyll (Gitelson and Merzlyak, 1997), which

is a nitrogenous molecule, but delineation for fresh

leaf N is rarely tested on available multi-spectral

imagery. Nitrogen in dry, ground plant material can be

detected with 
2100 nm spectra, but plant moisture

obviates detection at this wavelength in natural

ecosystems (Kokaly and Clark, 1999; Kokaly,

2001). Furthermore, chemical compounds (e.g.,

pigments) that share similar molecular structures
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often overlap and interfere with spectral delineation

(Curran et al., 1992). These factors, along with sensor

sensitivity, contribute substantial error to satellite leaf

N detection models.

The S:N ratio required for SPOT 5 and Ikonos 2

leaf N and C:N ratio detection were considerably

lower than the recommended S:N ratio (Kokaly and

Clark, 1999), which likely contributed to the problem

of fine scale delineation of N and C:N ratio at the

satellite level (Table 6). Actual S:N ratio in the NIR for

biomass models varied among sensors (Table 5),

although the NIR S:N ratio contributed less error to the

biomass estimates than the visible bands. The N-credit

model, then, depends upon sensor-specific S:N ratio

that may be a substantive determinant to model

reliability.

The NIR band represented biomass for these

homogenous sugar beet agroecosystems at full cover

using calibrated imagery, but this is contrary to

researchers who recommend use of spectral ratios for

biomass, such as NDVI or GNDVI. This index

approach is particularly useful for minimizing

differences in atmospheric and solar conditions

between images and between vegetation species. In

our case, minimizing image and vegetation variability

was not necessary. For one, images were calibrated

and errors for each band were identified so that derived

formulae could be adjusted accordingly. Secondly, we

are working with a monoculture where band combina-

tions are not needed to represent a wide range of

plant leaf thicknesses, pigments, etc. (Gitelson and

Merzlyak, 1997). Instead of using established indices,

we created ground-based models to estimate actual

biomass using the NIR, and we did not find that NDVI

or GNDVI improved accuracy (Senay et al., 2000;

Boegh et al., 2002). For the purpose of N-credit

estimation and separation of biomass from leaf N and

C:N ratio, our results suggest application of NIR

formulae for biomass estimation when utilizing cali-

brated imagery in homogenous agroecosystems.
5. Conclusion

Leaf level analyses indicated optimum N and C:N

ratio detection in the green and blue spectral regions;

however, convolved spectral data models applied to

satellite imagery only marginally delineated leaf N
and C:N. Satellite model estimates for leaf N and C:N

were centered near the median, so only average and

low leaf N content and C:N ratio could be estimated

spectrally. This is likely due to the narrow green peak

of interest, high S:N requirements, and peak offsets

among satellite sensors. However, spectral estimates

provided qualitative canopy assessment. Leaf C:N

ratio models delineated areas of very poor leaf quality,

such as weedy or stressed zones, that would

potentially influence N availability the following

year. Results represent the end of the 2003 season

only, so additional leaf C and N measurements in

subsequent years are advised to confirm that leaf

material is within the range reported here.

Satellite N-credit models require specific acquisi-

tion times for leaf quality and biomass, and only

two sensors (Ikonos 2 and SPOT 5) were available at

both times for N-credit model evaluation. SPOT 5

lacks the spectral resolution required for leaf N

detection, while Ikonos 2 spectral resolution was

sufficient for predicting residual N to within 7% of

actual measured N-credit (Fig. 8). Incorporated in

these estimates are errors associated with senor

spectral and spatial resolution, which subsume spatial

variability in the 200–400 kg ha�1 range (Fig. 6), but

aberrant zones of low or high leaf residue N are

delineated. Despite issues with resolution, our

spectral N-credit model depicted within-field varia-

bility with greater accuracy than the conventional

method of multiplying the number of plants harvested

by plant leaf N (Fig. 8).

Although further validation is recommended, the

models described here demonstrate that satellite

sensor data can be applied in agro-ecosystems to

assist with N management. Aboveground sugar beet

biomass and leaf quality may be estimated using

satellite data when plants are at full cover and the NIR

is >0.5, but spectral resolution offsets and optical

errors hinder accuracy and must be taken into account.

Each satellite sensor is spectrally unique; especially

in the green, so N detection capability varies with

sensor and detection limits may exceed detection of

variability within a field. Nevertheless, derived sensor-

specific models can estimate N-credit for agro-

ecosystems, and the C:N ratio model can be applied

to map aberrant leaf quality areas. Satellite N-credit

estimation is particularly applicable for precision

agriculture management, as this method can point to
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variability within and between fields on a pixel-by-

pixel basis. In summary, we evaluated the potential

utility of multi-spectral N-credit estimations using

four different satellite sensors for sugar beet growers

who wish to avoid the economic and environmental

impacts of over-fertilization.
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